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Abstract—A 3D attitude estimator based on the Unscented
Kalman Filter (UKF) using a MEMS IMU and magnetometer
is developed. The estimator uses a quaternion representation of
attitude, and issues with applying the UKF to quaternion state
are explored. The characterization of the sensors’ noise, bias and
bias walk is also documented.

I. INTRODUCTION

The estimation of an object’s 3D pose (rotation and
translation) relative to a global reference frame is an
important problem in robotics and aerospace engineering.
This estimation task is called navigation. Satellites, launch
vehicles, manned aircraft and UAVs need pose information
in order to control their trajectories and to point sensors,
communications equipment and weapons at targets. In this
project, I restrict the navigation task to estimating rotation
only.

Two broad classes of sensors are used in navigation:
proprioceptive and exteroceptive [1], [2]. Proprioceptive
sensors measure quantities internal to the robot or vehicle;
exteroceptive senors measure the surrounding world.

Accelerometers and rate gyroscopes are common
proprioceptive sensors; they measure the acceleration
and angular velocity of the vehicle body. The sensors detect
the effect of non-inertial fictitious forces on the motion of a
small system (oscillating mass, spinning wheel, etc.) within
the sensor. Typically, three orthogonal gyroscopes and three
orthogonal accelerometers are combined into a single device,
called a strapdown Inertial Measurement Unit (IMU) [3].

In articulated robots or vehicles, proprioceptive sensors are
also used to sense joint angles and actuator positions.

Navigation can be performed by integrating IMU
measurements. However, noise and sensor biases cause
the integrated estimate to drift over time. Depending on
the quality of the sensors, the estimate becomes useless
after tens of seconds (MEMS devices) to several hours
(navigation-grade IMUs) [3].

To correct for drift, exteroceptive measurements are incor-
porated into the estimate. Exteroceptive navigation sensors
include:

• Field sensors measure orientation relative to a vector
field which has a known direction in the global frame.
Magnetometers measure the Earth’s magnetic field, and
accelerometers can measure the gravitational field (on a
non-free-falling vehicle). Note that these sensors cannot
detect rotation about the vector, e.g. a gravitational sensor
cannot provide yaw/heading information.

• Beacon/Landmark sensors measure the range and/or bear-
ing to a set of beacons. Examples include Sun sensors [4],
GPS/GNSS, and LORAN.

• Mapping sensors sense nearby visual or shape features
and match them to a map of the environment. Cameras,
LiDAR, and ultrasound rangefinders have been used for
mapping. The map can be known a priori, or the estima-
tor can perform simultaneous localization and mapping
(SLAM) [5].

• Odometry sensors measure the incremental motion of the
vehicle relative to the environment. On wheeled vehicles,
encoders are used to count wheel revolutions. Visual
odometry uses optical flow algorithms to compute motion
from camera data [6].

In this project, I use an IMU and magnetometer.

Several estimators are used in navigation, generally
depending on which sensors are available. Non-linear Kalman
filters are the typical choice for systems with field, beacon and
odometry sensors. Kalman filters work well for systems with
approximately Gaussian sensor noise, which these sensors
usually have. Mapping sensors require more sophisticated
estimators because their measurement distributions are non-
Gaussian (e.g. an environment with several similar-looking
regions will produce a multi-modal distribution), particle
filters are often used in this case.

In this project, I will use an Unscented Kalman filter
(UKF). I choose the UKF over the Extended Kalman filter
because it offers superior covariance estimation, and avoids
the need to determine the Jacobians of the state transition
and measurement functions.

II. HARDWARE

For my sensors, I use an MPU-9150 from InvenSense
[7]. SparkFun Electronics sells the sensor conveniently



mounted on a breakout board (part number SEN-11486). The
MPU-9150 contains a 3-axis MEMS rate gyro, 3-axis MEMS
accelerometer, and a 3-axis Hall effect magnetometer.

For computation I use a BeagleBone Black single
board computer from Texas Instruments. The BeagleBone
communicates with the sensor board via and Inter-Integrated
Circuit (I2C) bus.

III. COORDINATE SYSTEMS

I reference the following coordinate systems in my project.
The notation for vectors is ~rA indicates that a vector is written
in frame A. The notation for quaternions is qA2B indicates the
rotation which transforms vectors from frame A to B.

~rB = ROTATEFRAME(~rA, qA2B) (1)

A. North East Down (NED)

The North-East-Down frame is an inertial, Cartesian, right-
handed coordinate system.
• The origin is at the location of the sensor (I am only

considering rotations, not translations of the sensor).
• The x axis lies in the horizontal plane (i.e. locally tangent

to the WGS84 ellipsoid) and points towards geographic
(not magnetic) North.

• The z axis points towards the center of the Earth.
• The y axis completes the right-handed system.

B. Sensor

The sensor frame is a non-inertial, Cartesian, right-handed
coordinate system. The estimation task is to determine the
rotation of the sensor frame relative to the NED frame

IV. SENSOR MODELS

A. Accelerometer

I model the MEMS accelerometer measurement function as

~asensormeas (t) = ROTATEFRAME(−~gNED
Earth, qNED2sensor(t))

+ ~νaccel(t) (2)

where:
• ~asensormeas (t) is the acceleration measured in the sensor

frame at time t.
• ~gNED

Earth = [0, 0, 9.81 m s−2] is the Earth’s gravitational
field in the NED frame.

• qNED2sensor(t) is the rotation from the NED frame to
the sensor frame at time t.

• νaccel(t) is the accelerometer measurement noise.
Compared to the magnitude of the acceleration due to

gravity, the bias of MEMS accelerometers is typically quite
small [7], [3]. Therefore I do not include bias terms in
my accelerometer model. Further, I assume that the sensor
only undergoes rotation, not translation. Any accidental
accelerations (e.g. shaking of the sensor during rotation,
centripetal acceleration) are modeled as noise. I mounted the
sensor near the body’s center of mass to minimize centripetal

acceleration.

The measurement noise is drawn from

~νaccel ∼ N (0,

σ2
accel,d,x 0 0

0 σ2
accel,d,y 0

0 0 σ2
accel,d,z

) (3)

The measurement noise standard deviation is typically spec-
ified as a continuous-time Fourier spectral density σaccel,c,∗,
with units of ms−2

√
s. This can be converted to discrete time

via:
σaccel,d,∗ = σaccel,c,∗

1√
∆t

(4)

where ∆t is the sampling time interval [8].

B. Rate Gyroscope

I model the MEMS rate gyroscope measurement function
as [8]:

~ωsensor
meas (t) = ~ωsensor(t) + ~d+~bgyro(t) + ~νgyro(t) (5)

where:
• ~ωsensor

meas (t) is the angular rate measured in the sensor
frame at time t.

• ~ωsensor(t) is the true angular rate of the sensor with
respect to an inertial frame, at time t.

• ~d is a constant bias.
• ~bgyro(t) is a time-evolving bias.
• νgyro(t) is the gyro measurement noise.
I model the evolution of the bias as a stationary Gauss-

Markov process [8], [9]:

d~bgyro
dt

= −α~bgyro(t) + ~ηu,c(t) (6)

where α is the inverse of the correlation time, and ~ηu,c(t) is
the zero mean Gaussian bias walk noise. The discrete-time
version of this equation is [8]:

~bgyro(t+ ∆t) = (1− α∆t)~bgyro(t) + ~ηu,d(t) (7)

The sensor’s correlation time and bias walk noise standard
deviation are estimated in section V.

C. Magnetometer

I model the magnetometer measurement function as [10]:

~hsensormeas (t) = (I+D)−1(ROTATEFRAME(~hNED
Earth, qNED2sensor(t))

+~bmag) + ~νmag(t) (8)

where:
• ~hsensormeas (t) is the magnetic field measured in the sensor

frame at time t.
• ~hNED

Earth is the Earth’s magnetic field in the NED
frame. This value varies with time and geographic lo-
cation. In Cambridge, MA in 2015, it is ~hNED

Earth =
[19.5 µT,−5.1 µT, 48.2 µT] [11].

• ~bmag is a constant bias which rotates with the sensor.



• D is a constant, symmetric 3 × 3 matrix. Its diagonal
entries correspond to scale factor errors, and its off-
diagonal entries to non-orthogonality errors.

• ~νmag(t) is the magnetometer measurement noise.
Although the bias and scale factor terms are assumed to be

constant in time, they depend on the environment around the
magnetometer. Soft iron distortions (nearby ferromagnetic, low
magnetic coercivity materials), distort the Earth’s magnetic
field and change the value of D. Hard iron distortions (nearby
permanent magnets or electric currents) add to the Earth’s
magnetic field and change the value of ~bmag [12]. It is
important to locate the magnetometer away from time-varying
magnetic sources (e.g. motors). It is best to perform the
magnetometer calibration steps described in section V-B after
the magnetometer has been installed.

V. SENSOR CHARACTERIZATION

A. Allan Variance

I analyzed the noise properties of my sensors using the
Allan variance technique [3]. The Allan variance of a signal
is computed according to algorithm 1. The Allan variance
is computed for a range of averaging times τ , typically 10
times the measurement interval to 0.1 times the duration of
the signal. The Allan deviation (

√
AVAR(τ)) is then plotted

against τ on a log-log scale.

Algorithm 1 Allan Variance
function AVAR(τ )

Divide the data into n bins of time length τ
for each bin bi do

ai ← MEAN(bi)
end for
return 1

2(n−1)
∑n−1

i=1 (ai+1 − ai)2
end function

The resulting Allan deviation plot has the general shape
shown in figure 1. Given the time scales of my measurements,
I expect to capture the white noise and bias stability regions.
The Allan deviation plots for my sensors are shown in figures
2 to 4.

The values of the sensor’s noise parameters can be
read from the Allan Deviation plots. The continuous-time
measurement noise Fourier spectral density σ∗,c,∗ is the value
at which the linear −0.5 slope portion of the plot passes
through τ = 1 s [3]. I perform a linear best fit on the Allan
Deviation for τ ∈ [0.1 s, 10 s], and find the value of the
best-fit line at τ = 1 s. For comparison, I also compute the
discrete-time measurement noise σ∗,d,∗ by taking the standard
deviation of the signal. The results of both calculations
are presented in table I. For all sensors, the continuous-
and discrete-time noise estimates are in agreement, i.e.
equation 4 is approximately correct. The accelerometer noise
parameters are close to the manufacturer’s specified values,
while the gyro is 2 to 4 times nosier that the specification.

10-1 100 101 102 103

Averaging time [s]

10-3

10-2

10-1

A
lla

n
 D

e
v
ia

ti
o
n
 [

d
e
g
/s

]

Rate Gyro Allan Deviation

x: allan dev.
x: linear fit

y: allan dev.

y: linear fit
z: allan dev.
z: linear fit

Fig. 2. Allan deviation analysis of MPU-9150 rate gyroscope data.
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Fig. 3. Allan deviation analysis of MPU-9150 accelerometer data.
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Fig. 4. Allan deviation analysis of MPU-9150 magnetometer data.

The manufacturer does not specify noise parameters



Fig. 1. The typical regions of a log(ADEV(τ)) vs τ plot, and their relation to signal noise characteristics. Reprinted from [3].

for the magnetometer, but my values are about 9 times the
values reported for a similar MEMS Hall effect sensor in [13].

For sensor with bias walk, the Allan Deviation plot will have
a flat 0 slope region. The signal’s bias instability σ∗,bi,∗ is the
minimum value of ADEV, and the correlation time 1/α is the
value of τ at which the minimum occurs [3]. The continuous-
time bias walk noise ~ηu(t) has standard deviation [8]:

Var[η∗,u,c,∗] = σ2
∗,u,c,∗ = 2ασ2

∗,bi,∗ (9)

This is converted to discrete time by [8]:

Var[η∗,u,d,∗] = σ2
∗,u,d,∗ = (∆t)(σ2

∗,u,c,∗) (10)

The results of the bias walk analysis are presented in table
II. The accelerometer and gyro Allan Deviation plots have
a flat region, indicating that a bias walk process exists for
these sensors. The magnetometer Allan Deviation plot does
not have a flat region, and continues at a slope of ≈ −0.5
for all observed τ . This indicates that the magnetometer does
not have a bias walk process, only a white noise process.
This confirms my assumption that the magnetometer bias is
independent of time. The accelerometer bias is very small
(σaccel,u,c,∗ ≈ 10−4) compared to the quantity to be measured
(|~gEarth| ≈ 10), justifying my decision to neglect bias in the
accelerometer measurement model.

B. Magnetometer calibration

Calibrating the magnetometer entails estimation of the
parameters ~bmag and D. Both approaches require knowledge
of the magnitude Earth’s local magnetic field |~hEarth|, and do
not require knowledge of attitude. Because rotation preserves

TABLE II
SENSOR BIAS WALK PARAMETERS

Sensor Bias Instability Correlation Time

MPU-9150 Gyro x axis 2.40× 10−3 ◦ s−1 98.3 s

MPU-9150 Gyro y axis 3.23× 10−3 ◦ s−1 62.3 s

MPU-9150 Gyro z axis 1.40× 10−3 ◦ s−1 332.0 s

MPU-9150 Accel x axis 7.74× 10−4 ms−2 57.7 s

MPU-9150 Accel y axis 2.95× 10−4 ms−2 167.4 s

MPU-9150 Accel z axis 9.91× 10−4 ms−2 78.2 s

MPU-9150 Mag - > 400 s

magnitude, all measurements of the Earth’s field should
have magnitude |~hEarth| if the proper calibration factors are
applied. The magnitude errors between each of the calibrated
measurements and |~hEarth| can be used as a cost to find the
optimal ~bmag and D [10].

The calibration parameters can either be estimated from
a batch of data prior to running the attitude estimator, or
they can be estimated in real time as new magnetometer
measurements arrive. One a priori algorithm uses non-linear
least squares to minimize the sum of the squares of the
magnitude errors. A real-time algorithm uses a modification
of the UKF measurement-update equations [10].

The calibration process can be visualized as mapping a
3D ellipsoid to a sphere. If we plot the set of uncalibrated
measurements as points in 3-space, they lie roughly on the
surface of an ellipsoid. Calibration finds the translation (~bmag)



TABLE I
SENSOR MEASUREMENT NOISE PARAMETERS. SPECIFIED PARAMETERS FROM [7] UNLESS OTHERWISE NOTED.

Sensor FFT noise (meas) FFT noise (spec) RMS noise (meas) RMS noise (spec)

MPU-9150 Gyro x axis 0.0179 ◦/
√
s 0.005 ◦/

√
s 0.125 ◦ s−1 at 46Hz 0.06 ◦ s−1 at 92Hz

MPU-9150 Gyro y axis 0.0162 ◦/
√
s 0.005 ◦/

√
s 0.106 ◦ s−1 at 46Hz 0.06 ◦ s−1 at 92Hz

MPU-9150 Gyro z axis 0.0180 ◦/
√
s 0.005 ◦/

√
s 0.141 ◦ s−1 at 46Hz 0.06 ◦ s−1 at 92Hz

MPU-9150 Accel x axis 4.56× 10−3 ms−2√s 3.9× 10−3 ms−2√s 0.0315m s−2 at 46Hz 0.039m s−2 at 92Hz

MPU-9150 Accel y axis 4.63× 10−3 ms−2√s 3.9× 10−3 ms−2√s 0.0315m s−2 at 46Hz 0.039m s−2 at 92Hz

MPU-9150 Accel z axis 6.66× 10−3 ms−2√s 3.9× 10−3 ms−2√s 0.0453m s−2 at 46Hz 0.039m s−2 at 92Hz

MPU-9150 Mag x axis 0.136 µT
√
s Unspec’d 0.913 µT at 46Hz 0.1 µT at 100Hz [13]

MPU-9150 Mag y axis 0.143 µT
√
s Unspec’d 0.923 µT at 46Hz 0.1 µT at 100Hz [13]

MPU-9150 Mag x axis 0.151 µT
√
s Unspec’d 0.983 µT at 46Hz 0.1 µT at 100Hz [13]
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Fig. 5. Visualization of the magnetometer calibration process in 3D magnetic
measurement space.

and rotation and scaling (D) which transform that ellipsoid to
a sphere of radius |~hEarth| centered at the origin (see figure 5).

Whichever algorithm is used, it must be provided with
measurements from a set of attitudes which have good
coverage of SO(3) [12]. In the ellipsoid-fitting problem, there
is insufficient information if we have noisy points from only
a small patch of the ellipse. Analogously, the magnetometer
calibration problem is difficult with measurements from a
small range of attitudes. For a practical example of how
calibration can fail, note that the magnitude error minimization
is trivially solved by setting D = −I (map all points to the
origin) and ~bmag to any vector with magnitude |~hEarth|. With
insufficiently diverse measurements, I found that both the
least squares and UKF-based algorithms fall into this trap.

I choose to perform a priori calibration, and use
scipy.optimize.leastsq to solve the nonlinear least
squares problem.

VI. ESTIMATOR DESIGN

Because my system has nonlinear measurements and ap-
proximately Gaussian measurement noise, I use an Unscented
Kalman Filter (UKF) as my estimator.

A. Quaternion State in the UKF

The use of quaternions to represent attitude state requires
some modification to the standard UKF algorithm. First,
the UKF assumes that the state space is a vector space,
i.e. that all combinations of settings of the state variables
are valid states. While the quaternions H are a 4-D vector
space, only unit quaternions represent valid rotations in
SO(3). Therefore, the attitude state space is the 3-D surface
of the unit sphere in H, i.e. it is a manifold, not a vector space.

This invalidates the UKF’s representation of uncertainty.
The distribution of states should only include unit quaternions,
so level-sets of likelihood should be 3-D patches on the
surface of the unit sphere (figure 6). This requires a 3-D
representation of the attitude covariance. However, in the UKF
the dimension of the covariance is equal to the dimension of
the state. Therefore, the level-sets of likelihood would be 4-D
ellipsoids, and the distribution of states would include many
non-unit quaternions (figure 7).

To avoid this, the unit quaternions must be mapped to a
3-D vector space. Fortunately, the unit quaternions form a
Lie group (SO(3)), so their logarithms form a Lie algebra
(so(3)), which is a vector space (this duality is referred to as
the exponential map). The logarithm of a quaternion is defined
as follows: for a rotation of θ radians about a unit axis n̂:

q = [cos

(
θ

2

)
, n̂ sin

(
θ

2

)
] (11)

log(q) = [log(|q|), θn̂] (12)
= [0, θn̂] (13)

The logarithm of a unit quaternion has real part 0, and
complex parts equal to the axis-angle representation of the
rotation. Because the real part is always zero, it can be
dropped to represent the log-unit-quaternions as 3-vectors in



Fig. 6. An illustration of the 4-D unit sphere in H, a unit quaternion (red),
and its 3-D 1-σ uncertainty region (pink). The region lies on the unit sphere.

Fig. 7. A unit quaternion (red), and its 4-D 1-σ uncertainty region. The region
contains points which are not on the unit sphere.

so(3) = R3.

Another issue is that the UKF must average state vectors.
However, the unit quaternions are a redundant representation
of SO(3), and a quaternion and its negative represent the
same rotation. Before averaging quaternions, one must check
their vector dot product, and negate one of the quaternions if
it is negative.

B. Kraft’s quaternion UKF algorithm

Kraft’s quaternion UKF [14] represents attitude uncertainty
with a 3-D covariance, and uses the exponential map to
convert 3-D attitude disturbance vectors to disturbance
quaternions dQ(i). Its propagation function is presented
in algorithm 2. If there are n non-attitude states, then the
covariance Q has dimension (n + 3) × (n + 3), the state

estimate ~xest has dimension n + 4, and the sigma points
~X (i) have dimension n + 3. States 0, 1, 2, 3 are the attitude
quaternion, other states are vector components or scalars. The
diagonal entries Q[0, 0], Q[1, 1], Q[2, 2] represent the attitude
estimate variance about the body-frame x, y, z axes, with
units of rad2. W is the process noise covariance, and R is
the measurement noise covariance.

Algorithm 2 Quaternion UKF Dynamics Propagation.
function PROPAGATEDYNAMICS(~xestk−1|k−1, Qk−1|k−1,W )

qestk−1|k−1 ← ~xestk−1|k−1[0 : 4]

Compute the sigma points ~X (i)
k−1|k−1 from the covari-

ance Qk−1|k−1 +W

dQ(i)
k−1|k−1 ← QUATEXP( ~X (i)

k−1|k−1[0 : 3]) ∀i
Q(i)

k−1|k−1 ← qestk−1|k−1 · dQ
(i)
k−1|k−1 ∀i

Propagate each state vector [Q(i)
k−1|k−1,

~X (i)
k−1|k−1[3 :]]

through the state transition function to step k|k − 1.
qestk|k−1 ← QUATAVG(Q(i)

k|k−1 ∀i)
~xestk|k−1[0 : 4]← qestk|k−1

~xestk|k−1[4 :]← MEAN( ~X (i)
k|k−1[3 :] ∀i)

dQ(i)
k|k−1 ← (qestk|k−1)−1 · Q(i)

k|k−1
~X (i)
k|k−1[0 : 3]← QUATLOG(dQ(i)

k|k−1)

Compute Qk|k−1 from ~X (i)
k|k−1

return ~xestk|k−1, Qk|k−1
end function

Algorithm 3 Quaternion UKF Measurement Update.
function UPDATEMEASUREMENT(~xestk|k−1, Qk|k−1, ~yk, R)

qestk|k−1 ← ~xestk|k−1[0 : 4]

Compute the sigma points ~X (i)
k|k−1 from the covariance

Qk|k−1

dQ(i)
k|k−1 ← QUATEXP( ~X (i)

k|k−1[0 : 3]) ∀i
Q(i)

k|k−1 ← qestk|k−1 · dQ
(i)
k|k−1 ∀i

Map each state vector [Q(i)
k|k−1,

~X (i)
k|k−1[3 :]] through the

measurement function to get the measurement sigma points
~Y(i)
k .
~yestk = MEAN(~Y(i)

k ∀i)
Compute Qyy from ~Y(i)

k and R.
Compute Qxy from ~X (i)

k|k−1 and ~Y(i)
k .

K ← QxyQ
−1
yy

d ~X ← K(~yk − ~yestk )T

dq = QUATEXP(d ~X [0 : 3])
qestk|k ← qestk|k−1 · dq
~xestk|k[0 : 4]← qestk|k
~xestk|k[4 :]← ~xestk|k−1[4 :] + d ~X [3 :]

Qk|k ← Qk|k−1 −KQyyK
T

return ~xestk|k, Qk|k
end function



C. Sensor Bias Estimation

I augment the system state [qNED2sensor, ~ω
sensor] with

the gyroscope bias parameters ~bgyro and run the UKF on the
augmented state. This accounts for the time-varying nature of
the gyroscope bias.

I also attempted to estimate the magnetometer bias in-real
time as described in [10]. However, this approach requires
the system to move through many orientations to build up
information about the magnetometer bias. Many trajectories
which I may be interested in estimating do not have a sufficient
variety of orientations. Instead, I chose to pre-calibrate the
magnetometer (see section V-B).

VII. RESULTS

I ran my estimator on data collected by my sensors in two
experimental trajectories:

1) static - No motion.
2) xyz90 - Sequential +90◦ and back rotations about each

axis.
I was unable to obtain a ground-truth measurement system,
so the true state during these experiments is only roughly
known. To compensate, I have also run my estimator on
simulated measurements of similar trajectories. The true state
trajectory is known for the simulated cases.

All cases start and end with the sensor level and pointing
its x axis to magnetic north. Because of the sensor’s
axis designations and the local magnetic declination, this
orientation is yaw = 15◦, pitch = 0◦, roll = 180◦ relative
to the NED frame. The estimator’s initial attitude guess
is that the sensor frame is aligned with the NED frame
(qinit = [1, 0, 0, 0]).

The results plots contain Euler angle traces on the bottom-
right axes. These are included to display the orientation in
a human-readable format, but are not used by the estimator.
The estimator represents orientation with a quaternion, the
components of which are shown on the top-left axes.

A. Simulation Results

The simulated static trajectory is shown in figure 8.
The estimator converges to the correct attitude estimate in
approximately 3 s and the body rate converges in 30 s (to a
slightly wrong value).

To illustrate the importance of the concerns raised in section
VI-A, I also ran a standard UKF on the same data. As shown
in figure 9, the estimator fails to converge, and the quaternion
has non-unit magnitude. Normalizing the quaternion estimate
after each step (figure 10) allows the filter to converge, but the
convergence time is significantly longer than with Kraft’s filter.

The simulated xyz90 trajectory is shown in figure 11. The
initial conditions are the same as for the static case. Note

TABLE III
ATTITUDE ESTIMATION PERFORMANCE ON STATIC TRAJECTORY.

CONVERGENCE TIME IS FIRST TIME WITHIN 2◦ OF FINAL VALUE. THE
TRUE VALUES ARE MEASURED WITH A LEVEL (PITCH, ROLL) AND WITH A

COMPASS CORRECTED FOR DECLINATION BY [11] (YAW).

Axis True value Estimated value Convergence time

yaw (14.8± 2.0)◦ (17.0± 1.5)◦ 1.6 s

pitch (0.0± 0.5)◦ (−1.0± 0.4)◦ 0.08 s

roll (180.0± 0.5)◦ (−179.6± 0.4)◦ 0.07 s

that the yaw uncertainty decreases around t = 10 s and
t = 25 s, when the system experiences large pitch and roll
displacements. In these states, the sensor yaw axis is not
aligned with gravity, so the accelerometer can provide yaw
information, reducing the estimate’s yaw variance. Also note
that the roll and yaw Euler angle experience a gimbal lock
singularity at t = 25 s when pitch = 90◦. The quaternion
representation of attitude does not have a singularity.

B. Experimental Results

The experimental static trajectory is shown in figure 12.
Note that the z axis body rate is erroneously high due to an
erroneously low z axis gyro bias estimate for the first few
seconds. The rate-of-change of q[2] (yaw) as it converges
from the initial guess (yaw = 0◦) to its correct value
(yaw = 15◦) causes the filter’s z axis body rate estimate
to be positive. However, the rate gyro (correctly) reads a
body rate of ≈ 0 ◦ s−1, so the estimator’s z axis gyro bias
estimate becomes negative to compensate. After yaw becomes
constant, it takes some time for the z axis gyro bias estimate
to re-converge to its correct value (≈ 0 ◦ s−1). I was able to
significantly shorten this time by changing the sensor model’s
rate gyro correlation time from 1/α = 100 s to a fictitiously
low 1/α = 10 s.

All attitude components attain a final value within 2◦ of
their true value (see table III).

The experimental xyz90 trajectory is shown in figure 13.
The 90◦ motions about the x (at t =5 s to 12 s), y (at t =14 s
to 21 s) and z (at t =24 s to 30 s) are correctly detected. Also
note that the roll and yaw Euler angle experience a gimbal lock
singularity at t = 17 s when pitch = 90◦. As in the simulated
case, the quaternion representation of attitude does not have a
singularity.

After the trajectory is completed, all attitude components
attain a final value within 3◦ of their true value (see table
IV).

VIII. CONCLUSION

I have successfully implemented Kraft’s quaternion based
UKF described in [14]. The estimator performs well (attitude
error < 3◦) on simulated and experimental data. To represent
attitude uncertainty, Kraft’s UKF uses a 3-D exponential



TABLE IV
ATTITUDE ESTIMATION PERFORMANCE AFTER XYZ90 TRAJECTORY. THE
TRUE VALUES ARE MEASURED WITH A LEVEL (PITCH, ROLL) AND WITH A

COMPASS CORRECTED FOR DECLINATION BY [11] (YAW).

Axis True value Estimated value

yaw (14.8± 4.0)◦ (11.8± 1.5)◦

pitch (0.0± 0.5)◦ (−0.7± 0.4)◦

roll (180.0± 0.5)◦ (179.7± 0.4)◦

mapped quaternion covariance instead of directly taking the
4-D covariance of the quaternion state. This representation
is theoretically justified because the quaternions which
represent valid rotations lie on a 3-D manifold within the
4-D quaternion space H. Practically, I have demonstrated that
Kraft’s UKF has ≈ 3× faster convergence time that a UKF
which uses 4-D quaternion covariance.

I have also demonstrated the characterization of a MEMS
IMU and magnetometer. I used Allan variance to assess
the white noise and bias walk parameters of the sensors. I
employed a nonlinear least squares optimization algorithm to
estimate the magnetometer bias and scale factor error.
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Measurement source: simulation  |  Trajectory: static  |  Estimator: kraft_quat_ukf  |  Magnetometer: included

Fig. 8. Estimator outputs, simulated measurements, and true state for the static trajectory using Kraft’s quaternion UKF. Estimated states are shown as dashed
lines. The 1-σ estimate uncertainty is shown as a shaded region around the dashed lines.
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Fig. 9. Estimator outputs, simulated measurements, and true state for the static trajectory using a standard UKF without quaternion normalization. Estimated
states are shown as dashed lines. The 1-σ estimate uncertainty is shown as a shaded region around the dashed lines.
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Fig. 10. Estimator outputs, simulated measurements, and true state for the static trajectory using a standard UKF with quaternion normalization. Estimated
states are shown as dashed lines. The 1-σ estimate uncertainty is shown as a shaded region around the dashed lines.
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Fig. 11. Estimator outputs, simulated measurements, and true state for the xyz90 trajectory using Kraft’s quaternion UKF. Estimated states are shown as
dashed lines. The 1-σ estimate uncertainty is shown as a shaded region around the dashed lines.
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Measurement source: experimental  |  Trajectory: static  |  Estimator: kraft_quat_ukf  |  Magnetometer: included

Fig. 12. Estimator outputs and experimental measurements for the static trajectory using Kraft’s quaternion UKF. Estimated states are shown as dashed lines.
The 1-σ estimate uncertainty is shown as a shaded region around the dashed lines.
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Measurement source: experimental  |  Trajectory: xyz90  |  Estimator: kraft_quat_ukf  |  Magnetometer: included

Fig. 13. Estimator outputs and experimental measurements for the xyz90 trajectory using Kraft’s quaternion UKF. Estimated states are shown as dashed lines.
The 1-σ estimate uncertainty is shown as a shaded region around the dashed lines.


