
MIT 18.086 COMPUTATIONAL SCIENCE AND ENGINEERING II

Computational Fluid Dynamics with Shocks

Matthew Vernacchia

May 16, 2016

1 ABSTRACT

I present a review of the governing equations of fluid flow, and of Computational Fluid Dynam-
ics methods for the numerical solution of these equations. I describe my implementation of a
2D finite difference MacCormack solver for the Euler equations, and demonstrate my solver
on 2 problems which contain shock waves: a shock tube and supersonic flow over a ramp.

2 INTRODUCTION

2.1 MOTIVATION

Many engineering problems in the military and transportation sectors involve supersonic
fluid flow. A significant phenomenon in many supersonic flow problems is the formation
of shock waves. Important design problems, such as a helmets to protect against traumatic
brain injury from explosions, rocket nozzles for missiles and launch vehicles, or a spacecraft’s
reentry trajectory, depend on our ability to model and understand shocks.
Analytical solutions exist for some simple problems, and these were the primary engineering
analysis tools during the 1940s, 50s and 60s. However, these tools restricted designers to simple
geometries and a piecewise understanding of the problem. Consider an aircraft designer asked
to predict the shock pattern and drag of a fighter jet in supersonic flight. He could solve the
shock pattern from a conical nose and from a diamond-section wing or tail, and add these
results together to get a rough estimate of the total vehicle’s drag. However, the interaction
of these shocks where the wing and fuselage meet would be left to guesswork. And a more
complicated wing cross section (i.e. a proper airfoil) would not be possible to solve. Therefore,
a drag prediction of useful fidelity would require expensive and time consuming wind tunnel
tests.

1

Numerical solutions to fluid flow problems (Computational Fluid Dynamics) now enable engi-
neers to analyze more complicated problems. This allows for the design of higher-performance
vehicles. Although wind tunnel testing is often still necessary to calibrate or validate CFD
results, the use of CFD means that much fewer physical experiments must be performed. This
can substantially reduce the cost and time of development.

2.2 GOVERNING EQUATIONS

2.2.1 NAVIER-STOKES EQUATIONS

Fluid flow (whether subsonic or supersonic) is governed by the Navier Stokes equations. In n
dimensions, these equations contain 4+n unknowns at each point in space and time:

• Pressure, p

• Density, ρ

• Internal energy, e

• Temperature, T

• Velocity, ~u

There are 4+n equations which relate these variables:

CONTINUITY EQUATION The continuity equation enforces the conservation of mass.

∂ρ

∂t
+∇· (ρ~u) = 0 (2.1)

MOMENTUM EQUATIONS The momentum equations (one for each spatial dimension) enforce
Newton’s Laws. They relate the inertia of the fluid to the pressure, viscous, and external forces.

∂~u

∂t
+~u ·∇~u =− 1

ρ
∇p +ν∇2~u + 1

3
ν∇(∇·~u)+~F (2.2)

where ν is the kinematic viscosity (a property of the fluid) and ~F is an external force applied to
the fluid per unit mass.

ENERGY EQUATION The energy equation enforces the conservation of energy. It relates the
change in internal energy of the fluid to pressure work, viscous work, and thermal conduction.

ρ(
∂e

∂t
+~u ·∇e) =−p∇~u +Φ+∇· (k∇T) (2.3)

whereΦ is a viscous term dependent on the velocity second derivatives of velocity and ν, and
k is the thermal conductivity (a property of the fluid).

2

THERMODYNAMIC RELATION The thermodynamic relation links the internal energy to the
temperature and pressure.

e = e(T, p) (2.4)

For a calorically perfect gas,
e = cv T (2.5)

where cv is the gas’s heat capacity at constant volume. Most real gases can be approximated as
calorically perfect over small ranges of temperature.

EQUATION OF STATE The equation of state relates the fluid’s pressure, density, and tempera-
ture.

ρ = ρ(p,T) (2.6)

A common equation of state is the ideal gas law:

ρ = p

RT
(2.7)

where R is the specific gas constant (a property of the fluid). For a gas that is also calorically
perfect, the ideal gas law can be written as:

ρ = p

(γ−1)e
(2.8)

where γ= cp /cv is the ratio of specific heats (a property of the fluid).

2.2.2 NON-DIMENSIONAL PARAMETERS

Two important non-dimensional parameters define flow regimes where the behavior of the
Navier-Stokes equations are different.

MACH NUMBER The Mach number is the local velocity normalized by the local speed of
sound.

M = |~u|
a

(2.9)

where a is the local speed of sound (a function of the temperature and fluid properties). Mach
numbers less than 1 are subsonic; while Mach numbers greater than one are supersonic.
For subsonic flow, the Navier-Stokes equations are classified as elliptic PDEs, and their so-
lutions are smooth. For supersonic flow, the Navier-Stokes PDEs are parabolic: information
does not propagate upstream in the flow, and sharp changes in the solution variables (shocks)
can exist.

3

REYNOLDS NUMBER The Reynolds number gives the relative strength of inertia and viscous
forces.

Re = |~u|L
ν

(2.10)

Where L is a length scale of the problem, such as the chord of a wing or the diameter of a pipe.
If the Reynolds number is high, then viscous forces are small compared to the inertia of the
flow, and can be neglected for certain calculations. This leads to an important simplification
of the Navier-Stokes equations.

2.2.3 EULER EQUATIONS

In the context of fluid dynamics, the Euler equations are a simplification of the Navier-Stokes
equations, with no viscosity or thermal conductivity (ν= k = 0). They provide a good approx-
imation of certain high Reynolds number problems. The modified momentum and energy
equations are written below. The continuity equation (2.1), thermodynamic relation (2.4),
and equation of state (2.6) did not contain viscosity or conductivity terms, and are therefore
unchanged.

EULER MOMENTUM EQUATION

∂~u

∂t
+~u ·∇~u =− 1

ρ
∇p +~F (2.11)

EULER ENERGY EQUATION

ρ(
∂e

∂t
+~u ·∇e) =−p∇~u (2.12)

The Euler equations are hyperbolic PDEs.

2.2.4 EULER EQUATIONS IN CONSERVATIVE FORM

The Euler equations can be written in a conservative, vectorized, flux-based form. This form is
convenient for numerical techniques. I will present the conservative form in 2 dimensions,
but it can also be developed in 1 or 3. I assume a 2D Cartesian coordinate system with spatial
directions x and y . The state of the fluid is represented by the vector U (not to be confused
with the velocity vector, ~u):

U =

ρ

ρu
ρv
E

 (2.13)

where:

• u and v are the velocity components in the x and y directions. ~u = [u, v]T .

• ρu and ρv are the momentum per unit volume in the the x and y directions. The have
units of mass per area-time (kgm−2 s in SI).

4

• E is the total energy per unit volume. E = ρ(e + 1
2 (u2 + v2)). E has units of energy per

volume, which is equal to units of pressure (in SI, Jm−3 or Pa).

The state of the fluid is a function of space and time:

U =U (x, y, t) (2.14)

Next, define fluxes F and G for the x and y directions:

F =

ρu

ρu2 +p
ρuv

(E +p)u

 (2.15)

G =

ρv
ρuv

ρv2 +p
(E +p)v

 (2.16)

The Euler continuity, energy, and momentum equations can be written as:

∂U

∂t
+ ∂F

∂x
+ ∂G

∂y
= 0 (2.17)

Although pressure and temperature are not included in the state vector U , they can be
uniquely determined from U using the equation of state and thermodynamic relation. In the
case of a calorically perfect gas,

p = (γ−1)

(
E − 1

2
ρ(u2 + v2)

)
(2.18)

T = 1

cv

(
E

ρ
− (u2 + v2)

)
(2.19)

2.3 NUMERICAL TECHNIQUES

Many numerical techniques exist for solving the Euler equations. I classify these techniques by
3 choices: the spatial flux scheme, the time update scheme, and the shock capturing technique.
In all techniques, the solution is discretized spatially onto a grid or mesh. The state U of each
grid node is stored, this set of U s represents the state of the system at a point in time. An
update function uses this data to calculate the set of U s at the next time step.

2.3.1 SPATIAL FLUX SCHEME

Two major techniques exist for capturing the spatial derivative terms: finite differences and
finite volume.

5

FINITE DIFFERENCES In the Finite Difference technique, the fluxes F and G are calculated
at each grid point. To find the time derivative of U at grid point i , j , one uses the flux values
at the neighbor points to estimate the spatial gradients of F and G . These gradients can be
calculated using a central difference or upwind stencil. Finite difference techniques were the
first to be developed, and are simpler to implement.

Figure 2.1: Finite Difference scheme.

FINITE VOLUMES In the Finite Volume technique, a boundary B is defined around each grid
point, which encloses a finite volume V of space. The fluxes F and G are calculated between
grid points, on the sides of B . Using the divergence theorem, we write the time rate of change
of U within V as surface integral of the fluxes over B :

∂

∂t

(Ï
V

UdV

)
=

∮
B

(F x̂ +G ŷ) · n̂dB (2.20)

To discretized this equation, we choose V small enough that U can be assumed to have a
uniform value within it. Then,

∆U

∆t i , j
= 1

V

∮
Bi , j

(F x̂ +G ŷ) · n̂dB (2.21)

The finite volume scheme was developed after finite differences, and is somewhat harder
to implement (on a Cartesian grid). However, it is conservative, and is easier to apply to
unstructured meshes. Guaranteed conservation and applicability to complicated geometries
are valuable for solving engineering problems. Therefore, finite volumes are used in most
modern CFD software.

6

Figure 2.2: Finite Volume scheme.

2.3.2 TIME UPDATE SCHEME

Several algorithms are used to approximate the integration of U through time. These are
broadly divided into explicit and implicit techniques.

EXPLICIT Explicit techniques define U n+1 as an explicit function of previous time steps
U n ,U n−1, They are usually easier to implement and require less computation per step than
implicit techniques. However, their stability is limited to sufficiently small time steps. The
Courant-Friedrichs-Lewy (CFL) condition provides an upper bound for the allowable time
step:

∆t < (∆t)C F L = 1
|u|
∆x + |v |

∆y +a
√

1
∆x2 + 1

∆y2

(2.22)

MacCormack is a common explicit method for the Euler and Navier-Stokes equations, but
other explicit methods (Runge-Kutta, Lax-Wendroff) have been successfully used as well.

IMPLICIT Implicit techniques define an implicit relation between U n+1 and U n . To find
U n+1, a (usually linear) system of equations must be solved. Implicit techniques are more
difficult to implement and require more computation at each step (to solve the system of equa-
tions). However, their stability is not restricted to small time steps, so (if high resolution in time
is not desired) less steps need to be computed, reducing the overall computation requirements.

Beam-Warming is a commonly used implicit method.

7

2.3.3 SHOCK CAPTURING

Hyperbolic PDEs present a challenge to numerical algorithms. In the case of the Euler equa-
tions, solvers tend to exhibit non-physical oscillations near shocks. These oscillations can
impart the stability of the algorithm, and reduce the accuracy of the solution. To properly
capture flow with shocks, modifications must be made to the algorithm to reduce these oscil-
lations. This is achieved by adding artificial dissipation or limiting the flux.

CLASSICAL SCHEMES Classical schemes for shock handling use a classical time and gradient
scheme (e.g. MacCormack) and add artificial dissipation.

MODERN SCHEMES A popular class of modern shock handling schemes are the Total Variation
Diminishing (TVD) methods. These have the property the the magnitude of the local extrema
of the solution monotonically decrease with time. They handle shocks well, but only provide
1st order spatial accuracy. Newer algorithms include the Monotonic Upstream-centered
Schemes for Conservation Laws (MUSCL) and Essentially Non-Oscillatory (ENO) methods.

8

Figure 2.3: A comparison of shock capturing schemes. This figure shows the coefficient of
pressure along the surface of a wall. The wall has a small parabolic bump the
protrudes into the flow from x = 0 to x = 1. The inlet flow is subsonic (M = 0.85)
but the fluid accelerates to sonic speed over the bump, and a shock exists at the
rear of the bump. A MacCormack solver with artificial dissipation (black curve)
gives non-physical pressure oscillations upstream of the bump. A TVD solver (red
curve) does not. Figure reprinted from D. Lobao 2010.

3 IMPLEMENTATION

3.1 COMPUTATION PLATFORM

I implemented my solver in the Julia programming language (v 0.4.2). I performed my compu-
tations on a laptop computer with 6 GB RAM and an Intel i5-2410M CPU (2 cores at 2.3GHz)
running 64 bit Ubuntu 14.04.

My code is available at https://github.mit.edu/mvernacc/18086-project.

3.2 SOLVER

I chose a finite difference MacCormack scheme because of its implementation simplicity.

9

3.2.1 TIME UPDATE: MACCORMACK SCHEME

The MacCormack scheme operates in 2 steps: a predictor and a corrector.

U∗
i , j =U n

i , j −
∆t

∆x
(F n

i+1, j −F n
i , j)− ∆t

∆y
(Gn

i , j+1 −Gn
i , j) (3.1)

U n+1
i , j = 1

2
(U n

i , j +U∗
i , j)− ∆t

2∆x
(F∗

i , j −F∗
i−1, j)− ∆t

2∆y
(G∗

i , j −G∗
i , j−1) (3.2)

where F∗ is the flux calculated using U∗.

3.2.2 SHOCK CAPTURING: ARTIFICIAL DISSIPATION

To reduce oscillations around shocks, I use the following artificial dissipation scheme, taken
from D. Lobao 2010:

F ad
i , j = 1

2
(di+1, j −di−1, j (3.3)

di , j = ε(2)
i , j (Ui , j −Ui−1, j)−ε(4)

i , jΦi , j (3.4)

Φi , j =Ui+1, j −3Ui , j +3Ui−1, j −Ui−2, j (3.5)

νi , j =
|pi+1, j −2pi , j +pi+1, j |
pi+1, j +2pi , j +pi+1, j

(3.6)

ε(2)
i , j = k(2)νi−1, j (|~u|+a)i , j (3.7)

ε(4)
i , j = max(0,k(4) −ε(2)

i , j)(|~u|+a)i , j (3.8)

The artificial dissipation in the y direction is analogous. k(2) and k(4) are tuneable pa-
rameters. Lobao recommends values of k(2) = 1/4 and k(4) = 1/256. I found k(2) = 1/4 and
k(4) = 1/32 to be more suitable.

While the MacCormack scheme only depends on neighboring cells, the artificial dissipation
terms depend on cells up to 3 away. This wider spread introduces diffusion, which reduces the
magnitude of local extrema.

3.2.3 CURVILINEAR COORDINATES

Curvilinear coordinates are required to handle domains which are not made up of rectangular
segments. Consider a coordinate transform

(x, y) → (ξ(x, y),η(x, y)) (3.9)

where (x, y) are physical coordinates and (ξ,η) are grid coordinates, i.e. i = ξ/∆ξ, j = η/∆η.

10

We can write the Euler conservation equation in terms of the transformed state and flux:

J = 1

xξyη−xηyξ
(3.10)

U " = U

J
(3.11)

F " = yηF = xηG (3.12)

G" =−yξF +xξG (3.13)

∂U "

∂t
+ ∂F "

∂ξ
+ ∂G"

∂η
= 0 (3.14)

3.2.4 BOUNDARY CONDITIONS

Boundary conditions are implemented by padding the U grid with ghost cells.

At walls, the ghost cells have the same ρ and E as their internal siblings, but the velocity
vector is reflected about the wall tangent. This enforces a non-penetration condition at the
wall. Non-penetration is the appropriate velocity wall condition for the Euler equations; for
the full Navier-Stokes equations a non-slip condition would also be required.

At the inlet, the full state U is specified.

The outlet is free, i.e. the ghost cell is equal to the internal sibling cell.

4 RESULTS

4.1 SHOCK TUBE

I first demonstrate my solver on a shock tube to illustrate the necessity of artificial dissipation.
A shock tube contains a high and low pressure region separated by a diaphragm. At t = 0, the
diaphragm bursts, leaving a pressure discontinuity in the tube. A shock wave travels from the
discontinuity into the low pressure region, and an expansion fan travels into the high pressure
region. A region of uniform, intermediate pressure is left between the shock and the expansion
fan.

11

Figure 4.1: A shock tube. Reprinted from Wikipedia.

Figure 4.2: The evolution of pressure in the shock tube. Compare the (unstable) solution
without artificial dissipation (blue) to the solution with artificial dissipation (red)

12

Figure 4.3: My simulated shock tube results compared to the theoretical solution. Although the
artificial dissipation algorithm is stable, it shows non-physical oscillations between
the shock and the expansion fan.

4.2 MACH 1.5 RAMP

Next, I simulate Mach 1.5 flow in a tunnel with a 10° ramp. This example is applicable to
the design of intake ramps for supersonic air-breathing propulsion systems (see Figure 4.4).
It illustrates several important features of supersonic flow: a shock, an expansion fan, and
shock reflections. Figure 4.5 shows the expected locations of these features, and the boundary
conditions of the problem.

13

Figure 4.4: The inlet ramps of a McDonald-Douglas F-15E Strike Eagle. Reprinted from
Wikipedia.

Figure 4.5: The boundary conditions and expected features of the ramp problem.

I started the problem from a uniform initial condition equal to the inlet, and ran 2,200
iterations of the MacCormack solver with artificial dissipation. I used a 120 by 40 grid, and a

14

time step equal to 0.4(∆t)C F L . The simulation ran in 51min.

The evolution of the solution is shown in Figure 4.6. First, a low density region forms at the
top wall as the fluid diverges away from the wall. A high density region forms at the lower wall
as fluid impacts the wall. These regions are due to the non-physical initial conditions, which
set the velocity to be horizontal everywhere, violating the non-penetration condition at the
tilted walls.

Next, we see the growth of a shockwave from the bottom corner and an expansion fan from
the top corner. The density increases across the shock and decreases across the fan. As the
shock continues to grow, it reflects off of the top wall.

15

Figure 4.6: The evolution of the ramp problem solution.
16

Figure 4.7 shows the steady-state of the ramp problem solution. All of the expected features
are present. The shocks are crisp, only 2 or 3 mesh points wide. However, non-physical
oscillations are also present after the first and second shock reflections. These could be
reduced by increases the artificial dissipation, but at the cost of blurring the shocks. To
eliminated the oscillations, a more advanced solver, such as TVD, MUSCL or ENO must be
used in place of MacCormack.

Figure 4.7: The steady-state ramp problem solution.

5 CONCLUSION

I have implemented a 2D finite difference MacCormack algorithm to solver the compressible
Euler equations. The solver uses curvilinear coordinates and contains artificial dissipation
terms. The solver is able to stably resolve shocks, both due to pressure discontinuities and due
to supersonic flow. However, as is typical of MacCormack solvers, noticeable non-physical
oscillations are present near shocks, even with artificial dissipation. I applied the solver to the
simulation of a shock tube and of supersonic flow over a ramp.

17

